Publishing and consuming library loan information as linked open data

Prof. Magnus Pfeffer, Stuttgart Media University
pfeffer@hdm-stuttgart.de
Overview

- Motivation: Use cases
- Types of data
- Loan transaction data
- Modelling the data in RDF
 - Thinking from data
 - Thinking from usage
- Conclusion
- Looking ahead
Use case: Retrieval

- Loans as a quality indicator
 - More loans → more interest → higher relevance

- „Loan relevance“ is orthogonal to traditional relevance criteria
 - Desireable with result sets of almost identical content
 - Example search:
 - „Introduction to algebra“
 - „Mathematics for students of social sciences“
Retrieval: Example

Product Details

Hardcover: 656 pages
Publisher: Simon & Schuster; First Edition edition (October 24, 2011)
Language: English
ISBN-10: 1451648537
Product Dimensions: 9.3 x 6.3 x 1.7 inches
Shipping Weight: 2.4 pounds (View shipping rates and policies)
Average Customer Review: ★★★★★ (520 customer reviews)

Amazon Best Sellers Rank: #2 in Books (See Top 100 in Books)
#1 in Books > Business & Investing > Industries & Professions > High-Tech
#1 in Books > Computers & Technology > Business & Culture > Biographies
#1 in Books > Biographies & Memoirs > Professionals & Academics > Business
Implementation ideas

- Aggregation
 - Aggregate loan data on item level
 - Normalize loan data from different locations
 - Aggregate loan data on title level

- User interface
 - Displaying loan statistics in the short result list
 - Sort short result list by loan statistics
 - Using loan statistics in ranking
Use case: Resource discovery

- Assumption: Items loaned together are correlated
 - May not hold true in all instances
 - But certainly on an aggregated level
- Present „similar titles“ based on correlation information
Resource discovery: Examples

Customers Who Bought This Item Also Bought

I, Steve: Steve Jobs in His Own Words by George Beahm
☆☆☆☆☆ (20)
$8.76

Einstein: His Life and Universe by Walter Isaacson
☆☆☆☆☆ (311)
$12.89

The Presentation Secrets of Steve Jobs: How to B... by Carmine Gallo
☆☆☆☆☆ (74)
$14.93

BibTip Andere Benutzer fanden auch interessant:

Apple: die Geburt eines Kults / Moritz, Michael , 2011

Steve Jobs / Isaacson, Walter , 2011
Implementation ideas

- Analysing loan history
 - Same patron
 - Similar start of loan
 - Or: overlapping loan periods
 → Groups of titles → pairs of correlated titles

- Aggregation
 - Summation of correlation counts
 - Generation of correlation groups for each title

- Presentation
 - Top-n most correlated titles
 - Consider minimum correlation to suppress spurious results
Types of data in library information systems
Types of data: master data

- Properties
 - Changes and edit are rare
 - Slowly growing dataset
 - Stable identifiers

- Examples:
 - Business information systems
 - Product information
 - Customer contact information
 - Vendor information
 - Library information systems
 - Catalogue entries
 - Patron contact information
Types of data: dynamic data

- Properties
 - Subject to changes
 - Quickly growing dataset
 - Usually a combination of master data entries
 - Usually no own identifier

- Examples:
 - Business information systems
 - Sales transaction details
 - Library information systems
 - Media purchase transaction details
Loan transaction: ILS view

- Bibliographic entry
 - Series
 - Author
 - Title, …
- Item information
 - Item type
 - Call number
 - Location
 - ID / Barcode
- Patron information
 - Name
 - Address
 - User type
 - ID / Barcode

Check

Loan transaction
Loan transaction: ILS data

- Current loan
 - User ID
 - Item ID
 - Timestamps (start)
 - Order / Hold request
 - Pickup ready
 - Pickup by patron
 - Loan due time
 - Loan extensions
 - Timestamps / Numbers
 - Overdue escalation / overdue messages sent
Loan transaction: ILS data

- Completed loan
 - As before
 - Timestamps (end)
 - Item returned by patron
 - Return to stacks

Privacy

To protect the privacy of the patrons, the information on completed loans is usually anonymised after a short period of time.
Modelling loan transaction data in RDF
Approach 1: Consider the data

- Loans as **events**
- Minimum elements
 - Start Time
 - End Time
 - Item ID
 - **Anonymised** User ID or User Type
- Additional elements
 - Differentiated timestamps
 - Number of extensions
Event-based model

- Titel-IRI
 - hasItem
 - Properties
 - HoldRequestDate
 - PickupDate
 - ReturnDate
 - NoOfExtensions
 - DueDate
 - User ID

- Item-IRI
 - hasLoanEvent

- LoanEvent-IRI

Inverse relations should be included in the vocabulary and are left out for readability.
Properties

- Easy implementation
 - Existing data can be used 1:1
- Highly granular data
 - Each loan event needs an individual IRI
 - RDF consumers need to aggregate data themselves
 - complex graphs
 - costly queries
Approach 2: consider the application

- Loans as **statistics**
 - Loans per year / month / week
 - Differentiation by user type or location
Statistics-based model

- Titel-IRI
 - hasItem
 - Item-IRI
 - hasLoanStatistics
 - LoanStatistics-IRI
 - Properties
 - Time period
 - Number
 - User Group
Properties

- Harder implementation
 - Need to decide on statistical units
 - Need to normalize different loan conditions
- Less granular data
 - Less IRIs
 - Simple queries
 - Information on correlated titles is lost
So that's it?

- University of Huddersfield Library (UK)
 - Published circulation data as open data
 - http://library.hud.ac.uk/data/usagedata/
 - Used in a semantic catalog prototype
Loan conditions at UB Mannheim

- **Closed stacks**
 - Orders or hold requests from the OPAC
 - 4 weeks default loan period
 - Extensions possible
 - 2 weeks if there are other requests

- **Textbook collection**
 - No online orders or hold requests
 - 2 week default loan period
 - No Extensions possible

- **Open access areas**
 - No online orders or hold requests
 - 6 month default loan period – staff only

And there are several additional collections – with even more diverse conditions
Normalizing loan data

- Different default periods
 - Is a 8 week loan “more” than a two week loan?
- Multiple hold requests on loaned items possible
 - These items are on loan permanently – is this the same as an item on year-long loan by a single staff patron?
- Loan-and-return items
 - Patrons cannot browse books from the closed stacks
 - Browsing is done on the counter and discarded items are returned promptly – should these be counted as loans?
Model revisited

![Diagram of the model with entities and properties]

- **Item ID**
- **Item Type**
- **Call number**

Properties:
- **HoldRequestDate**
- **PickupDate**
- **ReturnDate**
- **NoOfExtensions**
- **DueDate**
- **UserID**

Entities:
- **Title-IRI**
- **Institution-IRI**
- **Item-IRI**
- **Location-IRI**
- **LoanEvent-IRI**
- **LoanConditions-IRI**

Properties:
- **ownsTitle**
- **hasItem**
- **atLocation**
- **hasLoanEvent**
- **hasLoanCondition**
Model revisited

- **Item ID**
- **Location**
- **Call number**

Properties

- **HoldRequestDate**
- **PickupDate**
- **ReturnDate**
- **NoOfExtensions**
- **DueDate**
- **User ID**

Institution-IRI

- **ownsTitle**

Titel-IRI

hasItemType

ItemType-IRI

- **hasLoanCondition**

LoanConditions-IRI

LoanEvent-IRI

- **hasLoanEvent**

ItemType-IRI

- **ofItemType**

Item-IRI

- **hasItem**

Item-IRI

Items-IRI

Properties
Modelling title correlation
Correlation model

- Correlation connects two titles
 - Type and strength of connection differ
Implementation

- Aggregation based on RDF published events possible
 - But extremely complex
 - Anonymized data can make it impossible

→ Should be published separately from loan events
Conclusion
Conclusion

- There are evident usage scenarios for loan data
 - Retrieval
 - Resource Discovery

- Comparing loan statistics between institutions is hard
 - Wildly diverging loan conditions based on user and item type and/or location
 - Little consensus in the community

- Modelling in RDF is possible
 - Complex model with many IRIs
 - The model theoretically satisfies both use cases
 - But for performance and privacy reasons loan data and correlation data should be published independently
Looking ahead

- We are currently
 - Creating a complete vocabulary definition
 - Converting several months of loan data for UB Mannheim
 - As granular events
 - As aggregated sums according to the german library statistics (DBS)

- We will
 - Evaluate the run-time complexity of the aggregation based on RDF
 - Create and publish correlation scores based on circulation data mining
And even further...

- **Presentation**
 - We are thinking about a Javascript semantic plugin
 - For browsers or embedding into OPAC pages
 - Show links, aggregate additional information, etc.

- **Data**
 - Loan data is interesting, but relatively spars
 - The real action happens in the OPAC
 - Interest indicators from clicks to full view
 - Correlation data from search sessions
 - Harvesting this information is possible by anonymous session tracking
Thank you for listening.