A RESTful JSON-LD Architecture for Unraveling Hidden References to Research Data

Konstantin Baierer, Philipp Zumstein
Mannheim University Library
SWIB15, 2015-11-24
Overview

- Context (data citations), Problem description
- Project InFoLiS: Overview
- Technical Architecture
- Demo

InFoLiS-Project (Integration of research data and literature)
Data Citation

- **Research data** = raw data, intermediate results in the research process
 - Your own research data
 - Research data from a data provider
 - Data from official statistics
 - Research data from your colleague
- **Citation** = formal structured reference to another scholarly work
- **Data Citation** = formal structured reference to research data
Début of Data Citation

When was the first structured data citation used in a publication?

Maybe around the year 2000? (send your suggestion to @infolis_project)

When was the first unstructured reference to research data used in a publication?

1609 or before (proof follows...)

[Diagram showing timeline: Printing Revolution around 1450, WWW 1991, DataCite 2009]
First Unstructured “Data Citation”

Kepler (1609): *Astronomia nova*

Tycho de Brahe (1546-1601) cites data from *Astronomia nova*, tradita commentariis de motibus stellæ Martis, Ex observationibus C. V. Tychonis Brahe:

New Astronomy, Based upon Causes, or Celestial Physics, Treated by Means of Commentaries on the Motions of the Star Mars, from the Observations of Tycho Brahe

Johannes Kepler (1571-1630)
Data Citations Principles

• Joint Declaration of Data Citation Principles:
 1. Importance
 2. Credit and Attribution
 3. Evidence
 4. Unique Identification
 5. Access
 6. Persistence
 7. Specificity and Verifiability
 8. Interoperability and Flexibility

• Currently 100 institutional supporters (39 data centers, 17 publishers, 26 societies and others)
Data Citations Format

Suggested Format by DataCite

creator (publication year): title.
version. publisher. resource type.
identifier

Data citation guidelines are included in APA style, NLM*, CMoS*, American Sociological Review, The American Economic Review, … (*) at handles databases
But in practice...

- Table 1: Population forecast for Germany depending on age cohorts – proportion in percent. Data base: 10th Population Forecast of the Federal Statistical Office.

- It already refers the IGLU study, according to which the ten-years-olds in Germany in an international comparison of reading literacy perform significantly better than the fifteen-years-olds.

- For this purpose, data from the Socio-Economic Panel (SOEP) of the years 1990 and 2003 are used and for both periods, the impact factors are estimated using linear regression models.
Processing Steps

- Detect data citations in running (full)text
- Resolve and normalize data citations
 - IGLU = Internationale Grundschul-Lese-Untersuchung
 - SOEP = Socio-Economic Panel
 = Sozio-oekonomische Panel
 = Sozioökonomische Panel
- Uniquely identify data citations
 - IGLU 2001, IGLU 2006 oder IGLU 2011?
- Find the cited research data
 - url
 - location
InFoLiS Project

Automating these processing steps, i.e. automatically unraveling hidden references (in running text) to research data into structured data citations with URIs

Flexible and long-term sustainable infrastructure
InFoLiS Project – more in depth

Data

Techn. Architecture: LOD + RESTful API

Model: Structure and Semantics

Algorithms: Data Mining, Bootstrapping

Integration

Discovery System, GoogleScholar, Research Data Repository, Publisher's Website, Everywhere?

Q: Where and how is the integration of data citations for our users most useful?
Different Agents want different data

Internal API
- Text Extraction
- Pattern Learning
- Reference Extraction
- Link Generation
- File Storage

Public API
- JSON-LD ↔ RDF
- REST API
- Simple HTTP API
- Resource Storage

Bulk CLI Tool

Browser Plugin

RDF Explorer

OAI/PMH?

RD/OA Repository

RSS/Atom?

Publisher
API Usability over Semantic Depth

RESTful(ish)
- Protocol-independent
- Serialization-independent
- Easy to implement in code

Easy to maintain
Easy to consume

Possible to understand

JSON
- Native Ordered Lists
- High Performance
- Deterministic structure

KISS®
API Usability over Semantic Depth

RESTful(ish)
- Protocol-independent
- Serialization-independent
- Easy to implement in code

Easy to maintain
Easy to consume

Possible to understand

JSON
- Native Ordered Lists
- High Performance
- Deterministic structure

KISS®
Main Operations in InFoLiS

Bootstrapping

- Speed > Semantics

Text Extraction

- Speed > Semantics

Pattern Application

- Speed > Semantics

Dataset Resolution

- Semantics > Speed
Deep modelling has its merit!

- Modelling Dataset granularity
 - Single issue of annual dataset?
 - Single panel of multi-faceted survey?

- Modelling Dataset reference vagueness
 - “As the results of our study indicate …”
 - “According to page 15 of the DERP panel …”

- Bibliometric Analyses
 - Spanning a graph of publications, datasets, people …

- Provenance Mining
 - Which patterns are found in different learn sets?
 - Text A sameAs Text B ⇒ PDF A textEquals PDF B
How to get the best out of both worlds?

Deep Modelling + KISS
Frontend architecture

- MongoDB
- Mongoose
- Mongoose Schema
- TSON
- Mongoose-Ontology Mapper
 - Triple Pattern Handler
 - Ontology handler
 - REST API handler
 - JSON Schema handler
- HTTP server
- RDF / JSON Content Negotiation
Extract from TSON-file

TSON = **Turtleson** = json-ld + json-schema in Turtle + CoffeeScript
One schema to rule them all

Ontology

Database schema

[Linked Data Fragments]

REST API

Data model explorer

REST API documentation
Demonstration

Discover the InFoLiS data model
Demonstration

API: graphical interface

essential: The Essential API calls to make use of InFoLiS

POST /api/upload

POST /api/execute

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm</td>
<td>"io.github.infolis.algorithm.TextExtractor",</td>
</tr>
<tr>
<td>tags</td>
<td>["socialScience", "ssoar", "en"],</td>
</tr>
<tr>
<td>inputFiles</td>
<td>["http://infolis.gesis.org/infolink/api/infolisFile/69de70e0-8d6f-11e5-868b-577996a3fa4b"]</td>
</tr>
</tbody>
</table>

Parameter content type: application/json

Response Messages

<table>
<thead>
<tr>
<th>HTTP Status Code</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Success</td>
</tr>
<tr>
<td>400</td>
<td>POSTing</td>
</tr>
<tr>
<td>500</td>
<td>Backed</td>
</tr>
</tbody>
</table>

```
$ curl -X POST --header "Content-Type: application/json" --header "Accept: application/json" -d "{
    "algorithm": "io.github.infolis.algorithm.TextExtractor",
    "tags": [ "socialScience", "ssoar", "en" ],
    "inputFiles": [ "http://infolis.gesis.org/infolink/api/infolisFile/69de70e0-8d6f-11e5-868b-577996a3fa4b" ],
    "outputFiles": [ "http://infolis.gesis.org/infolink/api/execute" ]
}" http://infolis.gesis.org/infolink/api/execute
```
Thank you for your attention!

Questions?

Keep in touch:
{baierer, zumstein}@bib.uni-mannheim.de
Twitter: @infolis_project

Homepage:
_Info, API, Tools, ...
...it's in rapid development_
http://infolis.github.io/

All InFoLiS Software is Open Source:
http://github.com/infolis