Target Vocabulary Maps

An Unreasonable Application of OWL

Niklas Lindström
Wait...

Before we begin...
How Long Is The Coast Of Britain?

Unit = 200 km,
length = 2400 km

Unit = 50 km,
length = 3400 km

https://en.wikipedia.org/wiki/How_Long_Is_the_Coast_of_Britain%3F_Statistical_Self-Similarity_and_Fractional_Dimension
How Far is Sweden From the Semantic Web?
Libris XL: the core of a new generation of Libris systems

In June 2018, XL went into production at the National Library Of Sweden, replacing the old MARC21 system with one based on Linked Data, and building upon BIBFRAME.

https://libris.kb.se/find.jsonld
Two Perspectives: Logical

Everything is **RDF**.

Interlinked entities with structured (bnode) or literal property values.

The Vocabulary (Ontology) is core:

- Type and Property Hierarchies
- Domains and Ranges
- Restrictions
Two Perspectives: Technical

Everything is JSON-LD internally.

Used as “just JSON” in code, storage and for indexing. In all layers alike.

Conforming to the semantics.

All public features (editing, searching, displaying) comply with the logical perspective.
BIBFRAME 2.0

The model created by LC to replace MARC21.

We formally decided to align our model with BF2 in 2017.

https://www.loc.gov/bibframe/docs/bibframe2-model.html
Not Just* BIBFRAME 2

KBV: Our local Application Vocabulary, for our specific needs.

It has a core of BIBFRAME 2 equivalencies (+ some of RDA, SKOS/MADS, Schema.org where needed).

* = Not actually? This depends on how someone reads/interprets our data…
How Standards Proliferate:
(See: A/C chargers, character encodings, instant messaging, etc.)

SITUATION:
There are 14 competing standards.

14?! RIDICULOUS!
We need to develop one universal standard that covers everyone’s use cases.

YEAH!

SOON:

SITUATION:
There are 15 competing standards.
First Mapping Attempt: JSON-LD Contexts

Currently deployed.

Generate a JSON-LD context from our internal application vocabulary; using its RDFS and OWL assertions.

Maps “our” terms to “public” terms.

Shortcomings:

- Only ONE target (a potpourri of prefixes)!
- Only works on the exact same level of granularity!

https://github.com/libris/lxltools/blob/0.8.1/lxltools/contextmaker.py

https://libris.kb.se/context.jsonld
Various Shapes of Usable

BF2:

</instance/a>
 bf:identifiedBy [a bf:Isbn ;
 rdf:value "12-3456-789-0"] ;
 bf:provisionActivity [a bf:Publication ;
 bf:agent </org/a> ;
 bf:date "2017"] .

Schema.org:

</instance/a>
 schema:isbn "12-3456-789-0" ;
 schema:publisher </org/a> ;
 schema:datePublished "2017" .
Currently

We only accept data conforming to our internal shape.

“Just JSON”. By being JSON-LD, it is RDF. We just don’t use all the flexibility yet.

Goal

Use our RDF vocabulary mappings to enable a richer I/O system.

On the vocabulary, data granularity and identity matching levels alike.
What Links Enable

Open World Assumption =
There’s More To Know

Case: Enriching from Wikidata

Locally: cooperate nationally with libraries, agencies etc. using LD.

Globally: LoC, DNB, BnF, ORCID, ISSN...

Requires:

- Shapes & Mappings
Different Data Shapes? ETL or ...?

How to do RDF(!) Alignments in Production?

A. Code them as needed? Extract, transform and load, using SPARQL Constructs (or XSLT, or GraphQL, or AWK/Perl/Python...)

How to specify selection of vocabulary terms? Handling granularities?

B. Declare them! Make Vocabulary Maps, just using RDFS and OWL?

Then, that can be used by generic code. Though Inference mightn’t be the One Solution™!
Meanwhile

On The “Semantic” Web
The myth of OWL inferencing...

Schema.org (some assertions, yes); but consumption by Google? NO!

DCAT-AP? NO!

LC:s BIBFRAME 2? NO!

Linked Data regularly means using RDF as a “raw” data format. For better and worse.
WHY?

Nobody follows the rules?

The Rete algorithm is a data structure and algorithm for implementing the matching function of pattern matching languages. It is often used in expert systems and rule-based systems to efficiently match patterns against facts. The algorithm uses a graph-like data structure to store and manipulate rules and facts, allowing for efficient processing and updating of the system.

The code is more what you’d call ‘guidelines’ than actual rules.”
RDFS & OWL as Mapping Tools

- `rdfs:subPropertyOf`
- `rdfs:subClassOf`
- `owl:equivalentProperty`
- `owl:equivalentClass`
- `owl:propertyChainAxiom`
- `rdfs:domain`
- `rdfs:range`
- `rdf:Statement`
Target Vocabulary Maps
Proof Of Concept

For every term in the target vocabulary, or selection of terms, find all possible paths from all known vocabularies to that term, by following the RDFS and OWL mapping assertions.

- Paths include property chain axioms with range-restricted subproperties.
- Statement-like entities can provide direct predicates from e.g. qualified events.

This is stored as a structured lookup table, used by a very simple algorithm to map from source type or predicate(s) to target type or predicate(s).

Code: https://github.com/niklasl/ldtvsm/ (< 300 LOC including curly braces)
Mapping Targets

Source

Target A

prefix : <http://id.loc.gov/ontologies/bibframe/>

</work/a> a :Print ;
 :carrier lccarrier:nc ;
 :instanceOf </abstract/a> ;
 :identifiedBy [a :Isbn ;
 rdf:value "12-3456-789-0"] ;
 :provisionActivity [a :Publication ;
 :agent </org/a> ;
 :date "2017"] .

</abstract/a> a :Text ;
 :content :Text ;
 :title [:mainTitle "A"] ;
 :contribution [:agent </person/a> ;

Target B

prefix : <http://schema.org/>

</work/a> a :Book ,
 :Product ;
 :exampleOfWork </abstract/a> ;
 :isbn "12-3456-789-0" ;
 :datePublished "2017" ;
 :publisher </org/a> .

</abstract/a> a :Book ;
 :illustrator </person/a> ;
 :name "A" .
Basic Mappings

Map term X to term Y

Given:

```<> a foaf:Document ;
  dc:title "A" .```

Target: **RDFS**

Expect:

```<> a rdfs:Resource ;
 rdfs:label "A" .```

Assuming:

dc:title rdfs:subPropertyOf rdfs:label .```
Varying Granularities

Structured Values and Shorthand Properties

Given:

```xml
</instance/a>
  bf:identifiedBy [ a bf:Isbn ;
    rdf:value "12-3456-789-0" ] .
```

Target: Schema.org

Expect:

```xml
</instance/a>
  schema:isbn "12-3456-789-0" .
```

Assuming:

```xml
schema:isbn
  owl:propertyChainAxiom ( [ rdfs:subPropertyOf bf:identifiedBy ;
    rdfs:range bf:Isbn ]
    rdf:value
  ) .
```
Flattening Events

Given:

```xml
</instance/a>
  bf:provisionActivity [ a bf:Publication ;
  bf:agent </org/a> ;
  bf:date "2017" ] .
```

Target: [Schema.org](http://schema.org)

Expect:

```xml
</instance/a>
  schema:publisher </org/a> ;
  schema:datePublished "2017" .
```

Assuming:

```xml
schema:datePublished
  owl:propertyChainAxiom (  
    [ rdfs:subPropertyOf bf:provisionActivity ;  
      rdfs:range bf:Publication ]
    bf:date  
  ) .

schema:publisher
  owl:propertyChainAxiom (  
    [ rdfs:subPropertyOf bf:provisionActivity ;  
      rdfs:range bf:Publication ]
    bf:agent  
  ) .
```
Beyond OWL: Qualified Relation as Reification

Given:

```xml
</work>
  bf:contribution [ a bf:Contribution ;
    bf:agent </person/a> ;
    bf:role lcrel:aut
  ] .
</work>

dc:creator </person/a> .
```

Target: DC Terms

Expect:

```xml
bf:Contribution
  rdfs:subClassOf rdf:Statement .

bf:contribution rdfs:range bf:Contribution ;
  rdfs:subPropertyOf

bf:role rdfs:domain bf:Contribution ;
  rdfs:subPropertyOf rdf:predicate .

bf:agent rdfs:domain bf:Contribution ;
  rdfs:subPropertyOf rdf:object .

lcrel:aut
  rdfs:subPropertyOf dc:creator .
```
Limitations

What To Leave Out?

Normalization?

Concept Scheme Mappings? Complementary?

Error Correction?

Bad Literals.

String Idiosyncrasies (structure versus presentation):

Forms of Names, microsyntaxes, “authorized access points”.

“Creative” semantics, misinterpretations, philosophical traps (platonism, perdurantism, nominalism).

“Punning?” (c.f. Jeni Tennison, 2012)
But isn’t OWL Dangerous?

The TVM approach doesn’t assume a fully flat open world. (More like linkable layers of worlds.)

An Application Vocabulary is a data wrapper (for semantic encapsulation).

It supports “follow your nose” from your data! Your specific notion of “title” gets a URI. (Cf. Application Profiles.)

(Also, never consume owl:sameAs undiluted!)

https://svgsilh.com/image/3254424.html
Next Steps

Data Ingestion & Profile Negotiation

Using Target Vocabulary Maps in production.

Reworking ETL pipelines, accessing linked data described in BF, Schema.org, SKOS, DC etc., using our Application Vocabulary mappings.

Internally:

- Normalize on selected Concept Schemes.
- Cleaning up poor literals (e.g. dates).

Publishing:

- Supporting Profile Negotiation (to provide “just BF”, “just DC”, “just SKOS” views, and some combinations (APs)).
- Simple Schema.org snippets (for SEO).
Just Raw Data & ETL while Waiting for the Semantic Web?

Raise the Bar Just a Bit!
Map your Target Vocabularies!