
Introduction to Fedora
Overview, examples, and core features

David Wilcox, DuraSpace
@d_wilcox

Learning Outcomes

Understand the purpose of a Fedora repository

Learn what Fedora can do for you

Understand the key capabilities of the software

Source: The Digital Ecosystem in the Balanced Value Impact Model (illustrated by Alice Maggs);
http://simon-tanner.blogspot.com/2014/09/do-you-understand-your-digital-ecosystem.html

Our community
is part of an

interconnected,
worldwide, scholarly

ecosystem.

http://simon-tanner.blogspot.com/2014/09/do-you-understand-your-digital-ecosystem.html

DuraSpace open source projects

DuraSpace services

Flexible Extensible Durable Object Repository Architecture

Concept

Implementation

Community

Fedora...

Stores, preserves, and provides access to digital objects

Supports flexible and complex content models for objects

Supports complex semantic relationships between objects inside and
outside the repository using RDF

Supports millions of objects, both large and small

Interoperates with other applications and services

Why use Fedora?

Fedora is flexible: it can handle both simple and complex use cases

Content in Fedora is durable: Fedora supports long-term preservation

Fedora powers successful digital repository and DAM applications

Fedora is standards-based

Fedora is backed by a thriving community

Fedora Front-Ends

Fedora is middleware

You can build a custom framework, or join a broader community:

Fedora in Production

Institutional Repository

https://scholarspace.library.gwu.edu/

Research Data

https://era.library.ualberta.ca/

Manuscripts

https://archbishopsregisters.york.ac.uk

Archives and Special Collections

http://digitalcollections.barnard.edu

Basic Concepts

Web Resources

Everything is a web resource with a URI

Resources have properties expressed as RDF triples

Resources can contain other resources (containers) or files
(binaries)

Book Example

Book
Collection

Book 1

Book 2

Page 2

Page 1

Page 2

Page 1

Page1.jpg

Page1.tiff

Page2.tiff

Page2.jpg

Page2.tiff

Page2.jpg

Page1.tiff

Page1.jpg

Container

Binary

RDF Properties

Core Features

Fedora system architecture

Standards

Focus on existing standards

Fewer customizations to maintain

Opportunities to participate in related communities

Core Services and Standards

1. Create/Read/Update/Delete - Linked Data Platform ✔

2. Versioning - Memento

3. Authorization - Web Access Control ✔

4. Fixity - http://tools.ietf.org/html/rfc3230#section-4.3.2 ✔½

5. Messaging - Activity Streams 2.0 ✔

Hands-on: CRUD http://localhost:8080/fcrepo/rest/

user/pass: fedoraAdmin/secret3

Available Operations via HTML UI

● GET/HEAD/OPTIONS (Retrieval)

● POST/PUT (Creation)

● PATCH (Update)

● DELETE (Removal)

HTML Interface Cheatsheet

Slug

{
URL / REST Endpoint

Step 1a: RDF Resource Creation
(POST)
1. Go to

http://localhost:8080/fcrepo/rest
(root node)

2. In “Type” select field choose
“container” (default)

3. In “Identifier” text field enter “basic”
4. Press “add” button

This will create a new RDF Resource (LDP
Basic Container) and redirect us to our next
slide!

Username: fedoraAdmin
Password: secret3

http://localhost:8080/fcrepo/rest

Step 1b: RDF Resource Creation
(POST)
1. You will be redirected to

http://localhost:8080/fcrepo/rest/basic
2. In “Type” select field choose

“container” (default)
3. In “Identifier” text field enter

“collection”
4. Press “add” button

This will create a new RDF Resource (LDP
Basic Container) and redirect us to our next
slide. This way we matched what we had in
our cheat sheet!

http://localhost:8080/fcrepo/rest/basic

Step 1c: RDF Resource Creation
(POST)
1. You will be redirected to

http://localhost:8080/fcrepo/rest/basic/
collection

2. Use “breadcrumb” to go back to
http://localhost:8080/fcrepo/rest/basic

3. In “Type” select field choose
“container” (default)

4. In “Identifier” text field enter “images”
5. Press “add” button

http://localhost:8080/fcrepo/rest/basic/collection
http://localhost:8080/fcrepo/rest/basic/collection
http://localhost:8080/fcrepo/rest/basic

Step 2: Resource Retrieval
(GET)
1. Every time you got redirected after

creating a Container you were using
GET.

2. Retrieval is accessed directly via the
LDP Path that defines a resource and
contains user and some server
managed RDF triples.

Step 3: Binary Resource Creation
(POST)
 1. Go to

http://localhost:8080/fcrepo/rest/basi
c/images

2. In “Type” select field choose “binary”
In “Identifier” text field enter
“hotdog”

3. In “File” choose any small image
4. Press “add” button

This will create a new Binary Resource (LDP
Non RDF Source) and redirect us to our next
slide!

http://localhost:8080/fcrepo/rest/basic/images
http://localhost:8080/fcrepo/rest/basic/images

Step 4: Binary Resource
Retrieval (GET)
1. You will be redirected to

http://localhost:8080/fcrepo/rest/basi
c/images/hotdog/fcr:metadata

2. Notice the fcr:metadata part!
a. Image is LDP contained in

“/hotdog”
b. Its metadata (rdf properties you

can manipulate) in a virtual
subpath named /fcr:metadata

Why? That way you can keep operations
separated and you can also directly describe via
RDF properties binary content.

http://localhost:8080/fcrepo/rest/basic/images/hotdog/fcr:metadata
http://localhost:8080/fcrepo/rest/basic/images/hotdog/fcr:metadata
http://localhost:8080/fcrepo/rest/images/hotdog/

Step 5: Update RDF Properties (PATCH)
1. Navigate to

http://localhost:8080/fcrepo/rest/basic/collection
2. We will add an “pcdm:Object” property using

“Update Properties”
a. Make sure “PREFIX pcdm” is there
b. At the end rewrite “DELETE… “ to

DELETE {}
INSERT { <> ebucore:width "100"}
WHERE {}

c. Press “Update”

http://localhost:8080/fcrepo/rest/basic/collection

Last step: Delete a resource (DELETE)

1. Stay at
http://localhost:8080/fcrepo/rest/basic/im
ages/hotdog/fcr:metadata

2. Press “DELETE” (the red one)
3. You will be redirected to the parent

resource after deletion.
4. Go again to

http://localhost:8080/fcrepo/rest/basic/im
ages/hotdog

What do you see?

http://localhost:8080/fcrepo/rest/basic/images/hotdog/fcr:metadata
http://localhost:8080/fcrepo/rest/basic/images/hotdog/fcr:metadata
http://localhost:8080/fcrepo/rest/basic/images/hotdog
http://localhost:8080/fcrepo/rest/basic/images/hotdog

Departed

Authorization:
Web Access Control

Authorization - Web Access Control

Authorization is optional and pluggable

WebAC is a W3C approach for managing authorization using linked data

Interoperable with other applications that implement the same approach

Implemented in Fedora 4 by community stakeholders

Versioning

Versions can be created on demand via the REST-API

A previous version can be restored via the REST-API

Hands-on: Versioning

Create a container named “Book”

Create version “v0” of “Book”

Add “dc:publisher” to “Book”

INSERT {

 <> dc:publisher "University Press"

}

WHERE { }

Create version “v1” of “Book”

Inspect and revert to v0

Fixity

Over time, digital objects can become corrupt

Fixity checks help preserve digital objects by verifying their integrity

On ingest, Fedora can verify a user-provided checksum against the
calculated value

A checksum can be recalculated and compared at any time via a REST-API
request

External Services

External Component Integrations

Leverages the well-supported Apache Camel project

Camel is middleware for integration with external systems

Can handle any asynchronous, event-driven workflow

External - Indexing

Index repository content for search

Indexing is configurable - could be based on any property

Solr and Elasticsearch have been tested

External - Triplestore

An external triplestore can be used to index the RDF triples of
Fedora resources

Any triplestore that supports SPARQL-update can be plugged in

Fuseki, RDF4J, and BlazeGraph have been tested

Audit Service

Maintains a history of events for each repository resource

Both internal repository events and events from external
sources can be recorded

Uses the existing event system and an external triplestore

Performance and Scalability

Test Plans

Testing large files, many files, and many containers

Tests are performed by community members

Have concerns about performance and scale? Join the group!

Metrics

A number of scalability tests have been run:

Uploaded a 1 TB file via REST API

17 million objects via REST API

3.5 million files via REST API

Supporting and Sustaining Fedora

Managed by DuraSpace (not-for-profit)

Funded by the community

Collaboratively developed by the community

Supported by 2 full-time staff members (not developers)

Fedora facts

Fedora 4 documentation
https://wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation

Fedora 4 wiki
https://wiki.duraspace.org/display/FF

Fedora 4 mailing lists
https://wiki.duraspace.org/display/FF/Mailing+Lists+etc

Useful Resources

https://wiki.duraspace.org/display/FEDORA4x/Fedora+4.x+Documentation
https://wiki.duraspace.org/display/FF
https://wiki.duraspace.org/display/FF/Mailing+Lists+etc

