
www.svde.org
info@svde.org

Real-Time “RDFization”

SWIB 2024, November 27th 2024

Andrea Gazzarini, Share-VDE Lead Architect

Leveraging Linked Data Fragments for enhanced data publication: the Share-VDE case study

I, Andrea Gazzarini

2

● Software Engineer (1999-)

● “Hermit” Software Engineer (2010-)

● Programming Passionate

● Information Retrieval Passionate

● Author of “Apache Solr Essentials”

● Apache Qpid (past) Committer

● Founder of SpazioCodice

● Share-VDE Lead Architect

● Husband & Father

● Bass Player

● Chapman Stick (aspiring) Player

https://spaziocodice.com
https://svde.org

The Share-VDE Initiative

4

Share-VDE: Share Virtual Discovery Environment

In a Nutshell

Share-Virtual Discovery Environment is a
library-driven initiative which brings together,
in a shared discovery environment, the
bibliographic catalogues and authority files of a
growing number of leading academic and
national libraries from across North America
and Europe.

FAST

?
?

Libraries

Libraries

IN OUT

https://svde.org

https://svde.org

Sapientia: The Share-VDE Knowledge Base

Sapientia: Genesis

6

Knowledge Base (Sapientia)

Data

The Domain Model

Core entities

The highest level of abstraction in Share-VDE, an Opus is an
entity that permits the grouping of works that are considered
functional or near equivalents. The Opus is defined by a
constellation of elements that form the shared content of works

A work is a resource reflecting the conceptual essence of
a cataloguing resource. A work is defined by a
constellation of elements representing the specific
intellectual or artistic form that an Opus takes each time
it is “realized”.

Instances and Items have the exact same
meaning of the corresponding entities in
BIBFRAME

Agents, Contributions

Subjects

Non-core Entities

Share-VDE manages as Prisms other non-core entities, too. Some example

● Places
● Formats
● Languages
● Availability

The Entity as a “Prism”

From Library Data to Sapientia

13
Library data is sent to Share-VDE, through API or offline
batches.

A Russian-Yakut-Ewenki trilingual dictionary
title

in11751868
localId

https://svde.org/agents/120
publisher

https://svde.org/places/4930956
publicationPlace

2009
publicationYear

Source data is split across the entities that form the Share-VDE domain model. In this
example we focus on the properties that are assigned to a Share-VDE instance (red triangle
above)

A Share-VDE member uses an ILS for managing its data.

https://svde.org/agents/120
https://svde.org/places/4930956

Prism, faces: the Share-VDE Entity

14

Linked Data Fragments

Share-VDE: The Big Picture

16

The Share-VDE knowledge base (Sapientia)
contains the integrated/clustered/enriched entities.

RDF Store

JDBC (Private)

HTTP (Private)

SPARQL/HTTP (Public)

RDBMS

Search Engine

Data flows into Share-VDE from libraries, institutions and
third-party sources (e.g. VIAF, ISNI, FAST)

 Chronos

Data is mainly edited through JCricket, the
Share-VDE entity editor.

Changes are asynchronously propagated
towards the three data storages

GraphQL/REST

SPARQL

Let s̓ analyze a (simple) SPARQL Query
PREFIX opuses: <https://svde.org/opuses/>
PREFIX works: <https://svde.org/works/>
PREFIX instances: <https://svde.org/instances/>
PREFIX items: <https://svde.org/items/>
PREFIX bf: <http://id.loc.gov/ontologies/bibframe/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?barcode
WHERE {

opuses:401 bf:hasExpression ?work .

?work bf:hasInstance ?instance .

 ?instance bf:hasItem ?item .

 ?item bf:isIdentifiedBy ?uri .

 ?uri rdf:value ?barcode
}

Prefixes: useful for associating a (long) URI to a short mnemonic code in the query.

A variable called ?barcode referenced in the query below, whose value(s) will
compose the output results

Query statements, composed by a subject, a predicate and an object, ending with a
dot.
The three parts can be an explicit value (e.g. bf:hasExpression) or a variable,
eventually bound with another statement (see the ?work variable). For that reason
they are also referred as Triple Patterns

 Simplifying, we could say a SPARQL query is a set of multiple triple patterns, potentially
 independent and executable as an atomic computation units.

Their execution offers a partial view of the whole SPARQL result, a Fragment, a Linked Data Fragment

Linked Data Fragments: Participants

RDBMS

Search Engine

JDBC (Internal)

HTTP (Internal)

SPARQL/HTTP
Triple or Quad Pattern Query / HTTP

Real-time

 The RDF representation of the requested data is created on the fly, according to one or more
ontologies that can be indicated in the request, as well.

Clients

RDF API / SPARQL Service Linked Data Fragment Resolver

Linked Data Fragments In Action

SPARQL/HTTP

Triple Pattern #1
Triple Pattern #2
Triple Pattern #3

Linked Data Fragment Client
OR

SPARQL Endpoint

● Provides a SPARQL Endpoint to clients
● Receives the SPARQL query
● Destructures the SPARQL query in triple patterns
● Optimizes / rewrites / reorders the patterns
● Calls the Triple Pattern Server(s) for each pattern
● Merge the results
● Returns the response to clients

A Triple Pattern Server (or Linked Data Fragment
Server) exposes a HTTP endpoint which is able to
compute and resolve (i.e. produce the corresponding
triples) a given pattern.

Triple Pattern #2

#LD

#LD

#LD

Trip
le P

att
ern

 #1

Triple Pattern #3

Scaling up Linked Data Fragment Resolvers…

SPARQL/HTTP

Triple Pattern #1
Triple Pattern #2
Triple Pattern #3

Linked Data Fragment Client
OR

SPARQL Endpoint

● Provides a SPARQL Endpoint to clients
● Receives the SPARQL query
● Destructures the SPARQL query in triple patterns
● Optimizes / rewrites / reorders the patterns
● Calls the Triple Pattern Server(s) for each pattern
● Merge the results
● Returns the response to clients

Triple Pattern #2

#LD

#LD

#LD

Trip
le P

att
ern

 #1

Triple Pattern #3

#LD

#LD

#LD

#LD
#LD

#LD

#LD

#LD

…and the Datasource layer behind

SPARQL/HTTP

Triple Pattern #1
Triple Pattern #2
Triple Pattern #3

Linked Data Fragment Client
OR

SPARQL Endpoint

● Provides a SPARQL Endpoint to clients
● Receives the SPARQL query
● Destructures the SPARQL query in triple patterns
● Optimizes / rewrites / reorders the patterns
● Calls the Triple Pattern Server(s) for each pattern
● Merge the results
● Returns the response to clients

Triple Pattern #2

#LD

#LD

#LD

Trip
le P

att
ern

 #1

Triple Pattern #3

#LD

#LD

#LD

#LD
#LD

#LD

#LD

#LD

(Let s̓ Simplify The) Architecture

Share-VDE: The Big Picture

23

The Share-VDE knowledge base (Sapientia)
contains the integrated/clustered/enriched entities.

RDF Store

JDBC (Private)

HTTP (Private)

SPARQL/HTTP (Public)

RDBMS

Search Engine

Data flows into Share-VDE from libraries, institutions and
third-party sources (e.g. VIAF, ISNI, FAST)

 Chronos

Data is mainly edited through JCricket, the
Share-VDE entity editor.

Changes are asynchronously propagated
towards the three data storages

GraphQL/REST

SPARQL

Share-VDE: The Big Picture

24

The Share-VDE knowledge base (Sapientia)
contains the integrated/clustered/enriched entities.

JDBC (Private)

HTTP (Private)

NoSQL

Search Engine

Data flows into Share-VDE from libraries, institutions and
third-party sources (e.g. VIAF, ISNI, FAST)

 Chronos

Data is mainly edited through JCricket, the
Share-VDE entity editor.

GraphQL/REST

SPARQL

Linked Data Fragments in Share-VDE: benefits
No RDF Storage

● RDF Data is translated/generated on demand.

Distributed Computation

Query Time
● Request-driven approach benefits.

○ (Example) No fixed mapping, different queries can request a different mapping in results
○ (Example) using the same query, requesters can selectively ask for specific prism faces

● Federated search is natively enabled

● Computation is distributed across the Linked Data Client (the SPARQL endpoint) and the Triple/Quads Pattern Server
○ The destructuration, the optimization/rewriting of the SPARQL query is done in the Linked Data Client
○ The execution of each single triple/quad pattern is done at Linked Data Fragment Server level

● The CKB is required to answer to a lot of small and simple requests, instead of dealing with one huge query

Query Time: Provenance-based de-structuration

26

GET http://svde.org/agents/201
…
x-svde-provenances: upenn, ualberta, uchicago

http://svde.org/agents/201

Query-Time Response “Shaping”

2727

GET http://svde.org/agents/201
…
x-svde-mapping: xbf

GET http://svde.org/agents/201
…
x-svde-mapping: xdc

<bf:Agent rdf:about="http://svde.org/agents/201">
 <rdf:type rdf:resource="http://id.loc.gov/ontologies/bibframe/Person"/>
 <wkd:P569>27 January 1832</wkd:P569>
 <wkd:P570>14 January 1898</wkd:P570>
 <wkd:P735>Carroll</wkd:P735>
 <wkd:P734>Lewis</wkd:P734>
 ...
</bf:Agent>

xbf = BIBFRAME + Wikidata

xdc = DublinCore + schema.org

<rdf:Description rdf:about="http://svde.org/agents/201">
 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>

 <dc:name>Carroll, Lewis</dc:name>
 <schema:birthDate>1832-01-27</schema:birthDate>
 <schema:deathDate>1898-01-14</schema:deathDate>
 ...
</rdf:Description>

http://svde.org/agents/201
http://svde.org/agents/201
http://example.org/a275597#Agent700-5
http://id.loc.gov/ontologies/bibframe/Person
http://example.org/a275597#Agent700-5
http://xmlns.com/foaf/0.1/Person

www.svde.org
info@svde.org

Thank you! Thank you!

www.svde.org
info@svde.org

Real-Time “RDFization”

SWIB 2024, November 27th 2024

Andrea Gazzarini, Share-VDE Lead Architect

Leveraging Linked Data Fragments for enhanced data publication: the Share-VDE case study

